
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS I N  FLUIDS, VOL. 7, 653-695 (1987) 
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SUMMARY 

This paper describes the work on extending the finite element method to cover interactions between a 
viscous flow and a moving body. The problem configuration of interest is that of an arbitrarily shaped body 
undergoing a simple harmonic motion in an otherwise undisturbed incompressible fluid. The finite element 
modelling is based on a primitive variables representation of the Navier-Stokes equations using curved 
isoparametric elements. The non-linear boundary conditions on the moving body are obtained using Taylor 
series expansion to approximate the velocities at the fixed finite element grid points. The method of averaging 
is used to analyse the resulting periodic motion of the fluid. The stability of the periodic solutions is studied by 
introducing small perturbations and applying Floquet theory. Numerical results are obtained for several 
example body shapes and compared with published experimental results. Good agreement is obtained for the 
basic non-linear phenomenon of steady streaming. 

KEY WORDS Fluid-Structure Interaction Incompressible Viscous Flow Finite Element Method Stability 
Analysis Steady Streaming 

1. INTRODUCTION 

Considerable research has been carried out on fluid-structure interaction problems, and today 
most of the analyses are handled with finite element methods. Most of this work, however, deals 
with inviscid fluids. A recent symposium' covered offshore structural applications. On the other 
hand, only a little work has dealt with viscous fluid applications. For example, Belytschko and 
Kennedy2 and Liu3 have both considered a general class of problems by using a mixed Eulerian- 
Lagrangian approach. Olson and Pattani4*5 have developed a method to analyse the periodic flow 
around an oscillating body with finite amplitude. 

This paper describes further work on the method and presents new results beyond those given in 
References 4 and 5. The problem addressed is that of an arbitrarily shaped body undergoing a 
simple harmonic motion in an otherwise undisturbed fluid. The finite element modelling is based 
on a primitive variable representation of the Navier-Stokes equations using curved isoparametric 
elements with quadratic interpolation for velocities and bilinear for pressure. The problem 
configuration is represented by a fixed finite element grid but the body moves past the grid. The 
non-linear boundary conditions on the moving body are obtained by expanding the relevant body 
boundary terms to first order in the body amplitude ratio to approximate the velocities at the finite 
element grid points. The method of averaging is used to analyse the resulting periodic motion of the 
fluid. The stability of the periodic solutions is studied by introducing small perturbations and 
applying Floquet theory. 

Numerical results are obtained for three different body shapes, namely (1) a square body 
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oscillating parallel to one of its sides, (2) an oscillating circular body and (3) a symmetric 
Joukowski profile oscillating parallel to the line of symmetry. The latter case is considered to 
investigate the flow pattern around an asymmetrical body. In all cases, results are obtained for 
steady streaming, instantaneous velocity vectors in the fluid domain and stability of the flow. A 
comparison is made between the numerical and published experimental steady streamlines. The 
following is necessarily brief but more details are available in Reference 6. 

2. THEORETICAL FORMULATION 

2.1. Conservation equations 

The problem under consideration is that of a two-dimensional body of arbitrary shape with a 
characteristic length b in the direction of motion, undergoing a simple harmonic motion in an 
otherwise still fluid (Figure 1). The motion of the body is given by s( t )  = so sin o t  where so is the 
displacement amplitude and o the impressed frequency. The characteristic velocity in the flow is 
that of the body, namely uo = oso, and taking b,  uo and 6' as co-ordinate, velocity and time-scale, 
respectively, the non-dimensional forms of the Navier-Stokes equations and continuity equation 
become 

ax ay2 a x a y  
a2u a Z u  a Z v  Z7+-+--- 

at 

c-) 

VISCOUS FLUID 

s = sinwt 
c-) 

k b  
~ BODY- RIGID 

VISCOUS FLUID 

\PROBLEM DOMAIN 

Figure 1 .  Problem configuration 
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au av 
ax ay -+-=o, 

where the pressure has been non-dimensionalized with respect to the characteristic shear stress 
puO/b, p being the fluid absolute viscosity. There are two natural Reynolds numbers in the problem, 
namely the usual Reynolds number and the frequency Reynolds number, given by Re = uob/v and 
R ,  = ob2/v, respectively. Note that B =  Re/R, = so/b is the body amplitude ratio. 

2.2. Moving body boundary conditions 

The body in an otherwise still fluid is describing a motion given by 

u(s(t)) = u(t) = uo cos o t ,  

v(s(t)) = v(t) = 0, 

where uo = sow. 
It is assumed that the finite element grid remains fixed at the mean position of the body but the 

body moves past the grid. To obtain velocities at the mean position of the body for any t > 0, we 
expand the relevant boundary terms by the Taylor series: 

u ( s ) = u ( O ) + s  - + (::lo 
v ( s ) = v ( O ) + s  - + . '  (::lo (3) 

where the subscript 0 indicates that the derivatives are evaluated at s = 0, that is at the mean 
position of the body. 

Truncating the series at order s and substituting from s(t) = so sin wt and equation (2) into 
equation (3), and rearranging, we obtain (in non-dimensional foi-m) 

u(O)=cost - p  - sint, (::lo 
u(O)= - B  - sint, (::lo (4) 

where all quantities are their respective non-dimensional values. The zero position in equation (4) 
indicates that the boundary conditions need to be applied to the finite element grid edges 
representing the boundary of the body in its mean position. Note that the above procedure can be 
applied to any description of s(t) so long as s(t) is small compared to the body dimension b. 

It is seen from field equation (1) that B is the obvious perturbation parameter in that it governs 
the non-linear convection terms. Therefore, representation of the boundary condition to order p in 
equation (4) is consistent with the order of non-linearity in the Navier-Stokes equations. 

2.3. Finite element formulation 

The current work is based on an integrated u-v-p primitive variable representation of the 
Navier-Stokes equations using curved isoparametric elements with quadratic interpolation for 
velocities and bilinear interpolation for the pressure. Therefore, 
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u = N i u i ( t ) ,  
u = Nivi ( t ) ,  
p =  M i p i ( t ) ,  

i = 1,2,. . . , 8  
i = 1,2,. . . ,8 
i =  1 ,  ..., 4 

where ui ,  vi ,  p i  are time-dependent nodal variables. 
Substituting equation ( 5 )  into the field equations (1) and following the Galerkin procedure over 

an element or equivalently following the ‘restricted’ variational principle4 over an element, yields 

(6) 

where M is the ’mass’ matrix given by 

K is the ‘stiffness’ matrix given by 

and d = { u j  u j  pi}’ is the nodal vector of unknowns. Details of the arrays are given in Reference 4. 
Substituting equation (5) into equation (4) and solving for the nodal variables at the edge of the 

finite element grid yields 

For each element on the boundary, as shown in Figure 2, equation (7) reduces to 

ui = cos t - f l  sin t Cijuj  - f l  sin t cos t 1 Cik, 
k 

(7) 

vi = - f l  sin t Cijvj ,  

where j is summed over the velocity variables other than those on the edge interfacing with the 
mean position of the body, k is summed over the velocity variables on that edge and 

Figure 2. Body-fluid interface element 
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cij = ( %)i, (9) 

where the subscript i indicates that dNj/dx is evaluated at the location of ui or ui, whichever is 
appropriate. 

When the finite element equations are assembled from equation (6), there are (say) net u and u 
nodal variables numbering n each and net p nodal variables numbering m. Out of these, the u and u 
nodal variables, each numbering r,  are located on the boundary and are known from equation (8). 
These variables are segregated by suitable matrix manipulation and transformed to the right-hand 
side. This results in a matrix equation of the form 

[M + pSintP]d+ [K 4- P C O S t Q  + pSintR]d + f i  

= Fsint  + Gcos t + P{Hcos2t + Lsint cost + J sin2t}, 
where 

d = (ul u ~ . .  . u ~ - ~  01 ~ 2 . .  . un-r  PI PZ . . . P,}' 

is the nodal vector of unknowns. Details of all other matrices are given in Appendix I. 

2.4. Approximate method for equations with periodic solutions 

The previous sections indicated the manner in which Navier-Stokes equations, together with 
boundary condition equations, are reduced to the ordinary non-linear differential equation (10). 
This equation still cannot be solved exactly, but approximate solutions can be obtained by the 
'method of averaging' (for discussion of this technique, see Reference 7). 

Let us assume that the solution of equation (10) for small P takes the form 

d = A + B(t) cos t + C(t) sin t, (1 1) 
where B(t), C(t) are assumed to be slowly varying functions of non-dimensional time t. The first 
term A represents the steady streaming part of the solution which naturally arises for a system with 
quadratic non-linearities as is encountered here. From equation (1 l), we obtain by differentiating 

d = - B(t) sin t + C(t) cos t + B(t) cos t + C(t) sin t (12) 
To obtain an autonomous system of equations governing the amplitudes A, B(t), and C(t), 
equations (11) and (12) are first substituted into equation (10). Then to obtain three sets of 
equations for the three sets of unknowns A, B(t) and C(t), the resulting equations are 

(1) averaged over the period 271 
(2) multiplied by sint and averaged over the period 271 
(3) multiplied by cos t and averaged over the period 271. 

By hypothesis, for small P, B(t) and C(t) vary much more slowly with t than t itself. Therefore B(t), 
C(t), B(t) and c ( t )  are considered to be constant while performing the averaging. Through this 
process the following equations are obtained: 
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+ B  

where 

and 

0 

A =  { A ;  A;  
B={BY Bj” Bjp}T 

C = { C Y  cy Cjp}’ 

are average values (over one period) of A, B(t) and C( t ) .  Here the superscripts u, v, p indicate that the 
amplitudes are associated with u, v, p variables, respectively. Note that A = 0 by definition. 

The steady-state solution corresponds to the singular points of the autonomous system of 
equation (13), that is when B = C = 0. This results in a set of non-linear algebraic equations for 
A, B,.C. These equations are solved using a Newton-Raphson procedure. 

2.5. Determination of streamlines for steady part of the solution 

The A component of the solution in equation (1 1 )  represents the steady flow part of the solution 
which has been referred to as the streaming flow in classical fluid mechanics8 It is possible to 
obtain the stream function Y for this steady flow simply by solving the Poisson’s equation 

where u, v are the steady flow components of the velocities and [is the steady flow component of the 
vorticity. Equation (14) is represented by the functional 

where 52 is the domain of the problem and g(s) = aY/an  is the tangential velocity specified on the 
natural part of the boundary C, .  In this work we use the same finite element interpolation as used 
for the velocities in section 2.3, and also the same finite element grid. 
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2.6. Stability of steady-state solutions 

method of averaging. This steady-state solution from equation (13) may be written as 
In previous sections an approximate steady-state solution of equation (6) was obtained using the 

d= {Cj Vj pj}' = A + B cos t + C sin t .  (16) 
Once the steady-state solution is calculated, its stability is usually investigated by superimposing a 
small perturbation 

E = {&IdJ EllJ EpJT 

on d, that is by letting 

d = d + & ,  (17) 
where the subscripts ui, u j ,  pi designate perturbations to the uj, u j ,  p j  variables, respectively. 
Substituting equation (17) into equation (6), using the fact that d is the steady-state solution of 
equation (6) and linearizing the equations in E, we obtain 

M i  + Z(t)E = 0 (18) 

where Z(t)is a time-dependent periodic matrix, that is Z(t) = Z(t + 271). The details of Z(t) are given 
in Appendix 11. 

The boundary conditions to be applied are E,~,  cVJ = 0 on the outer boundary r, as well as at the 
mean position of the moving body. 

2.7. Floquet theory 

differential equations with periodic coefficients as in equation ( 18).9 
Floquet theory is used for characterizing the functional behaviour of a system of linear ordinary 

For the system in equation (18), it is possible to define a fundamental set of solutions 

E l  9 E2, .  . . ?  E N ,  

where N is the order of matrices in equation (18) after applying the boundary conditions. This 
fundamental set of solutions can be expressed in the form of an N x N matrix [E]: 

[&] = [&I E 2 . .  . EN]. 

It is clear that [E] satisfies the matrix equation 

M[i] + Z(~)[E] = 0. 

Since Z(t) = Z(t + 2 4 ,  

M[i(t + 271)] + Z(t + 271)[~(t + 271)] = M[i(t + 2 ~ ) ]  + Z(t)[E(t + 2 ~ ) ]  = 0, (21) 

from which it follows that [E(t + 271)l is also a fundamental set of solutions. Hence it is related to 
[&(dl by 

where CD is a non-singular constant N x N matrix called the 'transition matrix'. 
Introducing a transformation 
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where Y is a non-singular constant N x N matrix, equation (22) can be expressed as 

[ r ( t  + 2 4 1  = ~ - w ~ [ y ( t ) l =  r [ r ( t ) ] .  (24) 
The matrix Y can be chosen so that the matrix Y has a ‘Jordan canonical form’. This form 
depends on the eigenvalues of Q, which are the N roots of the characteristic equation 

l a , - A [ I ] I = O .  (25) 
When the roots of equation (25) are distinct, then the Jordan canonical form of Y is a diagonal 

matrix given by 

. . . .  . . . . .  . . .  . .  
0 0 0 ... AN 

Consequently, writing equation (24) in component form, it follows that 

yi(t + 271) = i i y i ( t )  for i = 1,2,. . . , N. 

It follows from equation (27) that 

yi(t + n2n) = Alyi(t), 

where n is an integer. As t + cc (i.e. n + co), it follows from equation (28) that 

From equation (28) it also follows that if Ai = 1, y i  is periodic with period 271, whereas if 
Ai = - 1, yi is periodic with period 471. Therefore, stability of the steady state solution requires 
that 

A i i  + 1; < 1 ,  

where AR, and Ali are the real and imaginary parts of Ai, that is Ai = ARi + iAli. 
The boundedness criterion of equation (29) applies even when roots Ai of equation (25) are not 

distinct. For further information about this and a Jordan canonical form of Y when the roots Ai of 
equation (25) are not distinct, the reader is referred to Reference 9. 

2.8. Numerical determination of the transition matrix 

Friedmann, Hammond and Woo lo  have suggested an efficient numerical integration scheme 
which yields the transition matrix 0 in a single pass without resorting to the application of initial 
conditions. Their integration scheme is based upon the fourth order Runge-Kutta scheme with 
Gill coefficients. 

In the present study a similar scheme is developed, but based on the trapezoidal rule integration 
scheme. An implicit integration scheme was necessary here since the matrix M in equation (20) 
is a singular matrix. The trapezoidal rule is chosen since it is the only member of the trapezoidal 
family of methods which is second-order accurate and unconditionally stable.’ 

Applying the trapezoidal rule to equation (1 8 )  yields 
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M v n + I  +Zn+lEn+1=0, 
En + 1 = E n  + Atvn+ 0.5 9 (3 1) 

v , + ~ . ~  = 0 . 5 ~ , + 0 ~ 5 ~ , + ~ ,  

where E ,  and v, are approximations to ~ ( t , )  and i ( t , ) ,  respectively, Z, = Z ( t , )  and At is the 
time step, which is assumed constant in the present circumstances. Combining equations (3 l), 
we obtain 

[M + 05AtZ,+ I]&,+ 1 = [M - 0~5AtZ,]~,, (32)  

E n +  1 = DnEn, (33) 

which can also be written in the form 

where the dynamic matrix 

D, = D(t,) = [M + 0.5AtZn+,]-' [M - 0.5AtZn]. 

Using equation (33) the following expressions can be immediately written out 

81 = DOEO, 
E~ = D l ~ l  = DIDoEo, (34) 
E ,  = D,- D n - 2 . .  .DO&,,. 

For constant step size At = 271/n and to = 0 and t, = 271, the last of equations (34) reduces to 

~(271) = D(2n - At)D(2n - 2At). . . D(O)E(O) 

= fi D(2n - kAt)E(O). (35) 
k = l  

Using equation (22) for any one fundamental set of solutions and for t = 0 gives 

E(271) = @&(O). (36) 
From equations (35) and (36) the transition matrix @ is given by 

@ =  n D(271-kAt), (37) 
k =  1 

where it is understood that the order of the product is important, i.e. the kth term must be 
before the (k + 1)th term, etc. 

After numerically evaluating the transition matrix using equation (37), the eigenvalues are 
evaluated using equation (25) and checked for the stability requirement given by equation (30) 
for i =  1,2 ,..., N .  

3. NUMERICAL RESULTS 

Numerical results are obtained for three different body shapes, namely (1) a square body oscillating 
parallel to one of its sides, (2) an oscillating circular body and (3) a symmetric Joukowski profile 
oscillating parallel to the line of symmetry. The boundary conditions for the flow situation are 
specified by the velocities u = u = 0 at the outer boundary and the velocities specified according 
to equation (8) at the body boundary. Since the body shapes considered are symmetric about 
the axis of oscillation, only half of the domain is modelled. By symmetry, the velocity u = 0 and 
the shear stress 7,. = O  on the symmetry line. For a finite element scheme only kinematic 
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boundary conditions need to be specified and the homogeneous natural boundary conditions 
come out as part of the solution in the limit of grid refinement. Therefore, on the symmetry line 
only u = 0 is enforced. The pressure needs to be specified only at one location in the domain to 
obtain the pressure datum. 

For the stability analysis, the velocity perturbation boundary conditions are given by 
E , = E , = O  at the outer boundary and on the body boundary since the velocities are specified 
at these locations. Since only half of the domain is modelled, there are two cases to be investigated, 
namely the symmetric and antisymmetric modes of stability. The symmetric case is obtained by 
forcing the velocity perturbation E, = 0 on the symmetry line, and the antisymmetric case is 
obtained by forcing the velocity perturbation E, = 0 on the symmetry line. The pressure 
perturbation E, = 0 at the same locations at which the pressure has been specified. 

tat sun^'^-'^ has presented excellent experimental results for oscillating bodies, and these 
results are used for verification of the present method. The results of Tatsuno are for the basic 
non-linear phenomenon of steady streaming, and are compared with the numerically obtained 
stream function for the steady component of the flow. 

All the computer programs are implemented on a 48-megabyte Amdahl 5840 system with 
double accelerator at the University of British Columbia. Double precision arithmetic is used 
throughout. The solution of the linear algebraic equations and the matrix inversions are performed 
using a sparse matrix solving package called SPARSPAK (University of Waterloo). 

3.1. Oscillating square body 

The numerical results are obtained for a square body having sides of unity with the centroid 
of its area located at the origin of the x-y co-ordinate system and sides parallel to the axes: The 
body is performing harmonic oscillations parallel to the x-axis. Two finite element grids shown 
in Figure 3 are developed. In the present case the pressure distribution is symmetric; therefore 
the pressure is specified to be zero at two symmetric locations, namely (1) and (2) shown in 
Figure 3. 

The finite element grid shown in Figure 3(a) is developed to perform preliminary calculations 
and to debug the program. The grid has 16 elements and 65 nodes. There are 121 net variables, 
98 of which are for the velocities and 23 for the pressure. Out of the 121, 18 velocity variables 
lie on the body boundary and are known. For the flow situation, there are three types of 
coefficients A, B, C, and therefore this results in 309 variables in total. For the stability analysis, 
the total number of variables is 103. The results from this coarse grid seemed to exhibit the 
correct trends for both the flow situation and the stability analysis, but the accuracy was rather 
poor. 

The finite element grid shown in Figure 3(b) is developed to represent Tatsuno’s experimental 
set-up and has Do/b = 30, where Do is the diameter of the outer fixed cylinder. The grid has 40 
elements and 147 nodes. There are 294 net variables, 242 of which are for the velocities and 52 
for the pressure. Out of the 294, 34 velocity variables lie on the body boundary and are known. 
The final total number of variables is 780 for the flow problem and 260 for the stability analysis. 

The numerical and experimental streamlines are shown in Figures 4, 5 and 6 for values of R, 
of 1.99, 26 and 120, respectively. In each case, the numerical results are shown for two values 
of the body amplitude parameter p, whereas the experimental results are for only one of these 
values. The numerical results are obtained by plotting 31 equally spaced contours between the 
maximum and minimum value of the steady stream function in the plotted domain. For each 
case the location and the value of the maximum stream function is tabulated in Table I. Since 
the body in the present case is symmetric about the y-axis, the value of the minimum steady 
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Figure 3.  Finite element grids for square body 

stream function is the negative of the maximum value and is located at the symmetric point 
about the y-axis. 

Tatsuno” obtained his experimental pictures by a stroboscopic technique which effectively 
eliminated the periodic part of the flow. Tatsuno showed that there are three distinct flow regimes 
with different flow patterns, and these Figures show one example in each regime. The flows 
clearly become more complex as R,  increases. 

The example shown in Figure 4 has been classified as Type I by Tatsuno. In this type of flow 
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Table I. Maximum steady stream function for oscillating 
square body 

Rul p Location of Maximum Maximum steady 
Stream function stream function 

X 

1.99 0.06 1.2 
1.99 0.10 1.2564 

26.00 0.06 1.0636 
26.00 0.10 1.16 

120‘00 008 - 2.7 
120.00 0.10 -2’3684 

Y 

1.05 0.02247 
1.0636 002012 
0.8218 0.03694 
0.8218 00297 1 
2.5 0.05744 
2.41 64 0.02996 

there is one main vortex system in each quadrant. In this case, the streaming flow does not 
separate at the edge of the body. The flow pattern of this vortex system is symmetric with respect 
to both the axis of oscillation and the axis perpendicular to it. Overall the numerical and 
experimental results agree very well. However, there are some small differences. In Figure 4, the 
experimental result, which is for p = 0.1, compares better with the numerical result for p = 0.06. 
The numerical result for p = 0.1 shows the start of another pair of vortices above (and below 
by symmetry) the body which are not evident in the experimental result. 

The example shown in Figure 5 has been classified as Type I1 by Tatsuno. In this example 
the flow separates from the square body at the edge and the twin vortices are generated enclosed 
between the primary vortex systems and the square body sides parallel to the oscillation direction. 
The twin vortices due to the flow separation have been observed to grow with increasing value 
of R ,  or the amplitude parameter p and ultimately the flow pattern shifts to that of Type 111. 
Overall the numerical and experimental results agree very well for this case, too. However, there 
are some small differences. In Figure 5, the experimental result, which is for p = 0.06, compares 
better with the numerical result for p=O.l. The numerical result for p=O.O6 does not show 
the appearance of the secondary twin vortices. As the amplitude parameter p is increased to 
0 1  the secondary twin vortices appear, but the location of the primary vortices remains essentially 
the same and this case compares better with the experimental result. 

The example shown in Figure 6 has been classified as Type 111 by Tatsuno. There are two 
vortex systems close to the body in each quadrant and flow separates at  the edge of the square 
body. Unlike the flow pattern of Type 11, this example does not enclose the second set of twin 
vortices between the primary vortices and the sides parallel to the direction of oscillation. It has 
been observed that the two vortex systems in each quadrant become smaller with increasing 
R,. Overall the numerical and experimental results agree very well in this case too, though small 
discrepancies do appear. In Figure 6, the experimental result, which is for /3 = 0.08 compares 
better with the numerical result for p = 0.1. The numerical result at p = 0.08 does not clearly 
show the appearance of the second set of twin vortices, but both the vortex systems are clearly 
visible at p = 0.1. 

The steady flow components illustrated in these Figures are called secondary flows, because 
they are expected to be small compared to the main periodic flow. For example, the forced single 
degree of freedom system with quadratic non-linearities (the same as the Navier-Stokes equation), 
described in Reference 9 shows the steady part of the response to be of the order of the perturbation 
parameter (D in the Navier-Stokes equations) compared to the primary harmonic response. 
The actual maximum of the resultant of the steady component of the velocities and its location 
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Table 11. Maximum steady component of velocity 
of oscillating square body 

j Location of Maximum urnax - Rul 
steady velocity 

X Y 
UO 

1.99 0.06 0.62.5 0.625 0.081 
1.99 0.10 0.5 0.25 0.282 

26.00 0.06 0.625 0.3125 0.177 
26.00 0.10 0.5 0.25 0.565 

120.00 0.08 0 5  0.25 0.583 
120.00 0.10 0.5 0.25 0.555 

in the flow domain are shown in Table 11. Since the body is symmetric about the y-axis these 
maximum velocities occur at two locations symmetric about the y-axis. These maximum velocities 
are obtained only from a check of nodal values, so they may not be the global maxima. 

The steady-state solution obtained from equation (13) can be written as 

d = {u j  u j  pj}' = A + Bcos t + Csint .  (38) 
Some of the results .obtained from equation (38) are shown in Figures 7, 8 and 9 for values of 
R,  of 1.99, 26 and 120, respectively. For all cases, the body amplitude parameter /J = 0.1. These 
Figures show velocity vectors over a uniform mesh in the vicinity of the body for t = 0, 7114, 
7112, 37114 and 71, that is equal time steps over one half cycle of body motion. The size of each 
vector indicates the velocity magnitude. Note that the scale in each illustration is different. 

It is clear from these Figures that there is one main vortex in the upper half of the fluid flow, 
and although it does move slightly from side to side it is located just above (and below by 
symmetry) the oscillating body. As the frequency Reynolds number R,  increases, this vortex 
moves closer to the body and decreases in size, thereby increasing the velocity gradients in that 
region. Consequently, the boundary layer thickness is also decreased. 

Picard iteration was used for solving the non-linear algebraic equations in the foregoing 
calculations. It seems to work reasonably well. All but one case, namely for R, = 120 and 
/J = 0.08, were successful using the linear solution as the initial guess. The number of iterations 
required gradually increased from 4 to 10 as R, and /J were increased. The aforementioned case 
for R,  = 120 and /J = 0.08 did not converge when a linear solution was used to start it. However, 
a converged result is obtained by using steps from R, = 26 and /J = 0.06 to R, = 90 and /J = 0.08 
and subsequently to the desired result. 

For the stability analysis the same two grids are used. Grid 3(a) has 23 pressure variables and 
80 velocity variables for both the symmetric and antisymmetric modes of stability analysis. 
Grid 3(b) has 52 pressure variables and 208 velocity variables for both the symmetric and 
antisymmetric modes. 

Preliminary calculations are performed using grid 3(a). The symmetric mode stability analysis 
is carried out for the oscillating square body for R, = 1.99 and /J= 0.1 and the results are 
presented in Table I11 for the top 52 eigenvalues in descending order of magnitudes. The flow 
situation considered here has also been observed experimentally and, therefore, it is expected to 
be stable. The results show that there are 46 eigenvalues (twice the number of pressure degrees 
of freedom) with magnitude equal to 1 and the rest are all less than 1. This, according to the 
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Figure 7. Velocity vectors for oscillating square body: R ,  = 1.99, B = 0.1, D,/b = 30 
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Figure 8. Velocity vectors for oscillating square body: R ,  = 26, p = 0.1, D,/b = 30 
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Figure 9. Velocity vectors for oscillating square body: R, = 120, [j = 0.1, Do/b = 30 
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Table 111. Symmetric mode stability analysis for oscillating square body: R ,  = 1.99, p =  0.1 

Eigenvalue no. Grid 3(a) 

271 271 271 
15 40 45 50 

271 A t = -  271 A ~ = -  271 A t = -  A t = -  A t = -  
10 

A t = -  
5 

14 14 

1 
2 
3 

46 
47 
48 
49 
50 
51 
52 

1 
0,847 14 
0.84527 
0.83926 
0.80885 
0.80592 
0.80072 

1 
0.51039 
0.51492 
0.49601 
0.42786 
0.42 170 
0.40445 

1 
0.22444 
0.22002 
0.20630 
0.14784 
0.14309 
0.13495 

1 
0.021 145 
0.01 1728 
0.01 1375 
0.001679 
0.0002 19 
0.00003 1 

1 
0.02 1 1 58 
0.01 1739 
0.01 1386 
0,001 684 
0~000220 
0.00003 1 

1 
1 
1 

1 
0.02 1 167 
0.01 1747 
0.011394 
0.00 1 687 
0.00022 1 
0.00003 1 

criterion given by equation (30), indicates that the numerical steady-state solution is stable for 
the symmetric perturbation. As the non-dimensional time step interval At  is reduced from 
At = 2n/5 to At = 2n/50, it is observed that the magnitudes of the eigenvalues (other than 
1A1= 1) decrease and converge to a constant value at At = 2n/40 onwards. The converged 
results show that the magnitudes of the eigenvalues other than 111 = 1 are much less than 1, 
qualitatively indicating that this is a ‘strongly’ stable situation. 

The results presented in Table IV are for the same flow situation as in the previous case. 
However, the calculations are performed using grid 3(b) and results are presented for the top 
11 5 eigenvalues in descending order of magnitude. The time step for convergence is expected to 
be much smaller for grid 3(b) as compared to the coarser grid 3(a).I0 The calculations are 
performed for At = 2n/10 and At = 2n/40 only, because of the large CPU time requirements. 
The results show that there are 104 eigenvalues (twice the number of pressure degrees of freedom) 
with magnitude equal to 1 and the rest are all less than 1. This indicates that the solution is 
stable for the symmetric perturbation. As the non-dimensional time step interval is reduced from 
At = 271/10 to At = 2n/40, it is observed that the magnitude of eigenvalues (other than 121 = 1) 
decreases, similarly to the previous case. 

The results for the top 115 eigenvalues in descending order of magnitude are presented in 
Tables V and VI for the symmetric and antisymmetric perturbation modes, respectively. The 
flow situation considered is R, = 120 and p = 0.1. This flow situation is very close to the flow 
situation R,  = 120 and p = 0.076, where the numerical solution did not converge. The results 
show that there are 104 eigenvalues (twice the number of pressure variables) with magnitude 
equal to 1 and the rest are all less than 1. This indicates that the solution is stable for both 
symmetric and antisymmetric modes. The results also show that the eigenvalues have essentially 
converged at At = 271/10 and further reduction of the time step interval to At = 2n/40 brings 
about no change in them. Many of the eigenvalues in the present case have magnitudes close 
to 1, which qualitatively indicates a ‘weakly’ stable situation. This may be due to the fact that 
the flow under consideration is very close to the flow for which the steady-state solution did 
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Table IV. Symmetric mode stability analy- 
sis for oscillating square body: R ,  = 1.99, 

/I = 0.1 

Eigenvalue no. Grid 3(b) 
271 

A t = -  
10 

111 

271 
At = - 

40 
111 

1 
2 
3 
. .  

104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 

1 
1 
1 

1 
0.87084 
0.86875 
0.80963 
0.77856 
0.77583 
0.77286 
0.76806 
0.75991 
0.74788 
0.73748 
0.73032 

1 
1 
1 

1 
0,58450 
055 128 
0.45520 
0.36658 
0.28828 
0.24335 
0.19939 
0.1701 7 
0.1 1284 
0.10934 
0.1052 1 

Table V. Symmetric mode stability analysis 
for oscillating square body: R ,  = 120, = 0.1 

Eigenvalue no. Grid 3(b) 

1 1 1 
2 1 1 
3 1 1 

104 1 1 
105 0.99080 0.99080 
106 0.9901 5 0.99015 
107 0.98694 0.98694 
108 0.98320 0.98320 
109 0.97966 0.97966 
110 0.97641 0.97641 
111 0.97332 0.97332 
112 0.97104 0.97104 
113 0.96457 0.96457 
114 0.95692 0.95692 
115 0.95261 0.95261 
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Table VI. Antisymmetric mode stability 
analysis for oscillating square body: 

R,,, = 120, f l =  0.1 

Eigenvalue no. Grid 3(b) 

2n 
A t = -  

10 

l i t1 

1 
2 
3 

104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 

1 
1 
1 

1 
0.99605 
0.99007 
0.99005 
0.98724 
0.9 8 5 92 
0.97984 
0.97664 
0.97421 
0.97182 
0.97014 
0.9 649 3 

2n 
A t = -  

40 

l i L l  

1 
1 
1 

1 
0.99605 
0.99007 
0.99005 
0.98 7 24 
0.98592 
0.97984 
0.97664 
0.97420 
0.97182 
0.97014 
0.96493 

not converge, and therefore this may represent a bifurcation point for transition to a different 
flow pattern. 

For all the cases considered here, the number of eigenvalues with magnitude 1 is twice the 
number of pressure variables. No explanation for this can be offered at this time, but it may be 
due to the fact that for incompressible flow the mass matrix M is rank deficient by the number 
of pressure variables because the continuity equation does not involve the pressure term explicitly. 

3.2. Oscillating circular body 

The numerical results are obtained for a circular body of unit diameter with its centroid located 
at the origin of the x-y co-ordinate system. The body is performing oscillations parallel to the 
x-axis. Three finite element grids, shown in Figure 10, are developed. The grids in Figures 10(a) and 
(b) are developed to represent Tatsuno’s experimental set-up. Again the pressure is specified to be 
zero at two symmetric locations, namely (1) and (2) shown in Figure 10. 

The three finite element grids shown in Figure 10 all have different D,/b ratios as follows: 
Figures 10(a), (b) and (c) have D,/b = 7.7, D,/b = 15.5 and D,/b = 30, respectively. All these grids 
have 48 elements and 173 nodes. There are 351 net variables, 290 for velocities and 61 for pressure. 
Out of the 351, 34 velocity variables lie on the body boundary and are known. The final flow 
problem has 951 variables and the stability analysis, 317. 

The numerical and experimental steady streamlines are shown in Figures 11, 12 and 13 for 
values of R ,  of 3.834, 21.34 and 278.2, respectively. The numerical steady streamlines shown in 
Figure 14 are for = 0.1 and those in Figure 15 are for R ,  = 21.34. 
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Figure 11. Steady streamlines for oscillating circular body for R, = 3.834, D,/b = 7.7. Top: numerical results for p = 0.161 
(upper), p = 0.13 (middle) and /j’ = 0.1 (lower). Bottom: experimental results, fi  = 0.161 

Figure 12. Steady streamlines for oscillating circular body for R, = 21.34, D,/h = 15.5, fi  = 0.0925 
Figure 13. Steady streamlines for oscillating circular body for R ,  = 278.2, D,/b = 30. Top: numerical results for /? = 0.038 

(upper) and /j’ = 0.043 (lower). Bottom: experimental results, /3 = 0.046 
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R, = 1 R, = 3.383 

R, = 21.344 R, = 43 

&=lo0  &= 177 

R, = 278.2 R, = 324 

= 0.1, D,/h = 30 Figure 14. Steady streamlines for oscillating circular body for 

Again 31 equally spaced contours between the maximum and the minimum values of the steady 
stream function are plotted. For each case, the value of D,/b, the location of the maximum stream 
function and its value are presented in Table VII. Since the body in the present case is symmetric 
about the y-axis the value of minimum steady stream function is the negative of the maximum value 
and located at the corresponding symmetric point about the y-axis. 
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/3 = 0.03 

Figure 15. Steady streamlines for oscillating circular body for R ,  = 21.34, D,/b = 30 

Tatsuno has experimentally observed that when R ,  is less than about 64 the whole flow field in 
each quadrant is occupied by only one circulatory streaming vortex (the inner circulation). Also, at  
a critical value of the body amplitude parameter /3 the inner circulation shrinks down sharply and 
this critical value depends on R,. 

In Figure 11 the experimental results are shown for R ,  = 3.834 and /3 = 0.161, whereas the 
numerical results are shown for the same value of R ,  and three values of /3, namely, 01 ,013  and 
0161. The experimental result is for R, less than 64 and clearly shows the inner circulation 
occupying the whole flow field in each quadrant. This indicates that the critical value of B for inner 



RIGID BODY-VISCOUS FLOW INTERACTION 677 

Table VII. Maximum steady stream function for oscillating cir- 
cular body 

Do Location of maximum 
Rul P stream function Maximum steady 

stream function 
X Y 

3.834 
3.834 
3.834 

21.34 
278.2 
278.2 

1 
3.383 

21.34 
43 

100 
177 
278.2 
324 
21.34 
21.34 
21.34 
21.34 

0 1  
013 
0.161 
0.0925 
0038 
0.043 
0 1  
0.1 
0 1  
0.1 
0.1 
0.1 
0.1 
0.1 
0.03 
006 
0.1 
013 

7.7 
7.7 
7.7 

15.5 
30. 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

- 0.9 
- 0.9 

045 
- 045 
- 1.3 
- 1.3 

1.2 
1.2 
1.65 
1.95 
2.35 
2.35 

- 2.9 
- 2.9 

0.65 
075 
1.65 

- 2.7 

0.9 
0.9 
0.3 
0525 
1.3 
1.25 
1.2 
1.2 
1.65 
2.025 
2.575 
2.65 
2.45 
2.325 
0.625 
0425 
1.65 
2.4 

0.0044 
0.0059 
0.0024 
0.0414 
0.0129 
0.01 19 
0.0278 
0.0440 
0.0798 
0.0969 
0.0878 
00285 
0.07 12 
0.1158 
0.0088 
0.0356 
0.0798 
00426 

circulation to shrink is greater than 0161. The numerical results for /3 = 0.1 and 0.1 3 show the inner 
circulation occupying the whole flow field in each quadrant, similarly to the experiment. The flow 
pattern of the inner circulation and the location of its core are very close to the experiment. But 
the numerical result for B=O.161 shows that the inner circulation has sharply shrunk. This 
indicates that the critical value of p is between 0.13 and 0.161. Overall, the numerical results 
exhibit the same phenomena as observed experimentally. 

In Figure 12 the experimental and numerical results are both shown for R,=21.34 and 
p = 00925. For both cases the core of the inner circulation is closer to the cylinder than in the 
previous case. Nevertheless, the circulation expands over the whole flow field. The core of the inner 
circulation appears to be closer to the cylinder for the experimental case as compared to the 
numerical case. Overall, the agreement between the experimental and the numerical results is very 
good. For both cases, the inner circulation occupies the whole flow field in each quadrant. This 
indicates two things, namely (1) the value of R, for transition to the case where the secondary 
vortex system appears is greater than R, = 21.34, and (2) at R, = 21.34 the critical value of at 
which the inner circulation shrinks is greater than p = 0.0925. 

In Figure 13 the experimental results are shown for R, = 278.2 and p = 0.046, whereas the 
numerical results are shown for the same value of R, and two values of B, namely 0.038 and 0-043. 
The numerical and experimental results are for R, greater than 64 and both clearly show the 
appearance of the secondary vortices close to the body. There is very good agreement between the 
experimental and numerical results regarding the flow pattern on the location of both the vortices 
in each quadrant. However, the numerical results show the secondary vortex more tightly packed 
to the circular body than the experimental one. The numerical result for p = 0.046 did not converge 
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even when the solution for p = 0.043 was used as an initial guess solution. This may represent a 
bifurcation point close to p=O.O46 for transition to different flow patterns. This may also be 
indicated by the fact that the stream function for p = 0.043 exhibits a sharper curvature close to the 
horizontal stagnation points as compared to the case of j3 = 0.038. 

The numerical steady streamlines shown in Figure 14 are for values of p of 0.1 and R, of 1,3.383, 
21.34, 43, 100, 177, 278.2 and 324. The stream function results show that the core of the primary 
vortex system moves away from the circular body as R, is increased from 1 to 324. This is also 
indicated in Table VII, which shows that the location of the maximum value of the steady stream 
function moves away from the body for the present case as R ,  is increased. The numerical 
streamlines also show that the inner circulation occupies the whole flow field for values of R, of 1, 
3.383,21.34,43 and 100. The results for values of R ,  or 177,278.2 and 324 show the appearance of 
the secondary vortices close to the body. This indicates that the value of R, for transition to the 
case where the secondary vortices appear is between R, = 100 and R, = 177. The fact that the 
numerical streamlines for R ,  = 177 and = 0.03 (not shown here) also show the appearance of 
secondary vortices indicates that at R, = 177 the secondary vortices appear, irrespective of the 
value of p. 

The numerical steady streamlines shown in Figure 15 are for values of R, of 3 1.24 and p of 0.03, 
0.06,O.l and 0.13. The stream function results show that the inner circulation occupies the whole 
flow field or j3 of 0.03,0.06 and 0.1. For B =  0.13 the inner circulation has shrunk close to the body. 
This indicates that the critical value of p for inner circulation to shrink is between 0.1 and 0.13 for 
R ,  = 21.34. 

The steady flow components illustrated in these Figures are expected to be small compared to 
the main periodic flow. The actual maximum of the resultant of the steady component of the 
velocities, its location in the flow domain and D,/b ratio for which the numerical computation is 
performed are shown in Table VIII. Since the body is symmetric about the y-axis these maximum 
velocities occur at two locations symmetric about the y-axis. These maximum velocities are 
obtained only from a check of nodal values, and hence may not be the global maxima. In all cases 
the maximum velocity occurred at the body mean position. 

In Table VIII the effect of change of D,/b is shown for three flow situations, namely (1) 
R, = 3.834 and p = 0*1,(2)R, = 3.834 and p = 0.161 and (3)R, = 21.34 and p = 0.1. In each case 
there is a change in the location and magnitude of the maximum steady velocity with a change 
in D,/b. The flow pattern for the steady streaming looks essentially the same for the flow situations 
(1) and(3). However, some differences were observed for the flow situation (2). This may be due to 
a shift in the critical value of p for the inner circulation to shrink. Further investigations are 
necessary to examine the effect of D,/b. 

Some of the results from equation (38) for this case are shown in Figures 16, 17 and 18 for 
R ,  = 3.834,278.2 and 324, respectively. The results in Figures 16 and 18 are shown for the body 
amplitude parameter p = 0.1 and the one in Figure 17 for p = 0.043. These Figures show velocity 
vectors over a uniform mesh in the vicinity of the body for t = 0,71/4,n/2 and 371/4, that is equal time 
steps over one half cycle of the body motion. The size of each vector indicates the velocity 
magnitude. 

It is clear from these Figures that there is one main vortex in the upper half of the fluid and 
although it does move slightly from side to side it is located just above (and below by symmetry) the 
oscillating body. As the frequency Reynolds number R, increases, this vortex moves closer to the 
body and decreases in size, thereby increasing the velocity gradients in that region. Consequently, 
the boundary layer thickness is also decreased. 

A full non-linear Newton-Raphson solver with the Jacobian [ J ]  updated every alternate 
iteration is used for solving the non-linear algebraic equations. The converged results are obtained 
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Table VIII. Maximum steady component of velocity for oscill- 
ating circular body 

Do Location of maximum 

b 
- steady velocity 

X Y 

R m  B 

1 0.1 
3.834 0.1 
3.834 0.1 
3.834 0.13 
3.834 0.161 
3.834 0.161 

21.34 0.03 
21.34 0.06 
21.34 0.0925 
21.34 0.0925 
21.34 0.1 
21.34 0.13 
43 0.1 

100 0.1 
177 0.1 
278.2 0.038 
278.2 0.043 
278.2 0.1 
324 0.1 

30 

30 
7.7 

1.7 
7.7 

30 
30 
30 
15.5 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

0.5 
0.0975 
0.5 
00975 
0.4904 
0.3536 
0.3536 
0.3536 
0.1913 
0.5 
0.5 
0.3536 
0.1913 
0.1913 
0.1913 
0.3536 
0.46 1 9 
0.3536 
0.46 1 9 

0 
0.4904 
0 
04904 
0.0975 
0.3536 
0.3536 
0.3536 
0.4619 
0 
0 
0.3636 
0.4619 
0.4619 
0.4619 
0.3536 
0.1913 
0.3536 
0.1913 

0.2859 
0.01 19 
0.4942 
0.0163 
0.0582 
0.2486 
0.1010 
0.7288 
0.4794 
1,0424 
0.8141 
0.6353 
0.8819 
0.8281 
0.6835 
0.2317 
02587 
0.5581 
0.5678 

within five iterations for all cases presented here except one. For the case of R ,  = 177, /3 = 0.13 and 
D,/b = 30, eleven iterations are required when the case of R ,  = 3.383 and p = 0.03 is used as an 
initial guess solution. Some cases did not converge at  all. For example, for R ,  = 278.2, p = 0.0463 
and D,/b = 30 the solution does not converge even when the case of R, = 278.2 and /3 = 0.043 is 
used as an initial guess solution. This numerical instability may represent a bifurcation point to 
different flow patterns. 

The results for the stability analysis are obtained by using the finite element grid in Figure 1O(c) 
with D,/b = 30. This grid has 61 pressure variables and 256 velocity variables for both the 
symmetric and antisymmetric modes of stability analysis. 

The stability analysis is performed for the oscillating circular body for R ,  = 324 and /3 = 0 1. The 
results for the top 135 eigenvalues are presented in descending order of their magnitudes in 
Tables IX and X for the symmetric and antisymmetric modes, respectively. The flow situation 
considered here is very close to the flow situations with the same values of R ,  of 324 and /3 of 0.06 
and 0.13, where the numerical results did not converge. The results show that there are 122 
eigenvalues (twice the number of pressure degrees of freedom) with the magnitude equal to 1 and 
the rest are all less than 1. This, according to the criterion given by equation (30) indicates that the 
steady-state solution is stable for both symmetric and antisymmetric perturbations. The results 
also show that the eigenvalues have essentially converged at  At = 2x110 and further reduction of 
the time step interval to At = 2x140 brings about no change in them. Many of the eigenvalues in the 
present case have magnitudes close to 1, which qualitatively indicates a ‘weakly’ stable situation. 
This may be due to the fact that the flow under consideration is very close to the flow for which a 
numerically converged steady-state solution was not obtained and, therefore, may represent a 
bifurcation point for transition to different flow patterns. 
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Table IX. Symmetric mode stability analy- 
sis for oscillating circular body: R ,  = 324, 

p = 0.1 

271 2K 
A t = -  A t = -  

10 40 

Eigenvalue no. 

111 1311 

1 1 
2 1 
3 1 

122 1 
123 0.99597 
124 0.99594 
125 0.99372 
126 0.99147 
127 0.9 8 6 8 6 
128 0.98472 
129 0.98353 
130 0.97974 
131 0.97941 
132 0.97645 
133 0.97352 
134 0.97244 
135 0.9695 1 

1 
1 
1 

1 
0.99597 
0.99594 
0.99372 
0.99147 
0.98686 
0.98472 
0.98353 
0.97974 
0.97941 
0.97645 
0.97352 
0.97244 
0.9695 1 

It should be noted that in the present case also, the number of eigenvalues with magnitude 1 is 
twice the number of pressure variables. 

3.3. Oscillating symmetric Joukowski profile 

The numerical results are obtained for a symmetric Joukowski profile of unit length. The body is 
performing oscillations parallel to the x-axis. The finite element grid shown in Figure 19 is 
developed for this case. To compare with Tatsuno’s experimental set-up, this grid has D,/b = 18.3. 
In the present case the pressure is specified to be zero at location (1) shown in Figure 19. 

The finite element grid shown in Figure 19 has 48 elements and 173 nodes. There are 352 net 
variables, 290 of which are for velocities and 62 for pressure. Out of the 352,34 velocity variables lie 
on the body boundary and are known. The final flow problems has 954 variables, and the stability 
analysis, 3 18. 

The numerical and experimental steady streamlines are shown in Figures 20 and 21 for values of 
R ,  of 55.1 and 206, respectively. Again 31 equally spaced contours between the maximum and 
minimum values of the steady stream function are plotted. For each case, the location and value of 
both the maximum and minimum values of the stream function are presented in Table XI. 

An example of the flow at R ,  = 55.1, a relatively small value, is given in Figure 20. In this case the 
experimental result is for a body amplitude parameter /3 of 0.06 whereas the numerical results are 
for three values of /3, namely (1) 0.1, (2) 0.06 and (3) 0.01. The flow field around the body is almost 
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Table X. Antisymmetric mode stability 
analysis for oscillating circular body: 

R,=324, b=0.1 

Eigenvalue no. 

1 
2 
3 

122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

1 1 
1 1 
1 1 

1 1 
0.99846 0.99846 
0.99504 0.99504 
099490 099490 
0.99 123 0.99 123 
099006 0.99006 
0.98816 0.98816 
0.98676 0.98676 
0.98421 0.98421 
098370 0.98371 
0.98168 0.98168 
0.98105 0.98105 
0.98012 0.98012 
0.97781 0.97781 

Figure 19. Finite element grid for Joukowski profile 
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Figure 20. Steady streamlines for oscillating Joukowski profile for R, = 55.1, D,/b = 18.3. Top: numerical results for 
B = 0.1 (upper), B = 0.06 (middle) and p = 0.01 (lower). Bottom: experimental results for j = 0.06 

totally occupied by the inner circulatory streaming for the experimental case. The numerical case 
that compares very well with the experimental one is for /3 = 0.1. For this case too, the flow field 
around the body is almost occupied by the inner circulatory streaming. The pair of vortices above 
the body (and below by symmetry) are located almost symmetrically about the y-axis with the vortex 
on the cuspidal edge of the profile occupying a slightly larger portion of the domain. As B is 
increased, the asymmetry of the location of the vortices becomes more pronounced. At /? = 0.06, 
the same as the experiment, the numerical steady streamlines show that the vortex on the obtuse 
edge occupies a larger portion of the plotted domain and the vortex on the cuspidal edge has 
shrunk. At B = O . l ,  the vortex, which was on the obtuse edge for p=O.O6, has now shifted its 
location towards the cuspidal edge and completely occupies the second vortex, which itself has 
shrunk even more. The numerical result for B = 0.1 compares very well with the experiment for 
B = 006. Overall, the numerical results show the characteristics of the experimental flow. 

The example in Figure 21 shows the steady streamlines for the numerical case at seven different 
values of B and for the experimental case at four different values of p, all for a moderate value of R,  
of 206. The numerical results are for values of p of 0~0091,0~0131,0~0188,0~0251,0~0325,0~0622 and 
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Figure 21. Steady streamlines for oscillating Joukowski profile for R ,  = 206, D,/b = 18.3: (a) p = 0.0091, (b) = 0.0131, 
(c) p=0.0188. (d) /?=0.0251, (e )  /?=0.0325, ( f )  /1=0.0622. (g) /?=0.1, (h) p=0.0091, (i)  p=0.0131, (j) p=0,0251, (k) 

11 = 0,0457 
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Table XI. Maximum and minimum steady stream function for oscillating Joukowski profile 

K,  P Location of Minimum steady Location of Maximum steady 
stream function minimum stream function maxim um 

stream function stream function 

.Y Y x Y 
~ 

55. I 
55.1 
55.1 

206 
206 
206 
206 
206 
206 
206 

0.0 I 
0.064 
0.1 
0.009 1 
0.0131 
0.0188 
0.025 1 
0.0325 
0.0622 
0.1 

- 0.7 
- 1.15 

0.7 
- 0.6 
- 0.6 
- 0.06 
- 0.6 
- 0.6 

1.05 
1.5 

0.35 
1.05 
2.275 
0.275 
0.275 
0.275 
2.275 
0.275 
1.125 
2.125 

- 0.001 5 
- 0.034 1 
- 0.0469 
-0.0013 
- 0.01 82 
- 0.002686 
- 0.003 7 
- 0.0049 
- 0.0337 
- 0.1205 

0.05 
- 0.05 
- 0.25 
- 0.2 
- 0.05 

0.05 
0.25 
0.4 

- 0.05 
~ 0.25 

0.425 
0.325 
0.375 
1.575 
1.575 
1.575 
1.575 
1.575 
0.3 
0.35 

0.00 1 6 
0.0138 
0.0047 
0.00 1 8 
0.0029 
0.005 125 
0.0096 
0.0234 
0.01 12 
0.0049 

0.1 and the experimental results are for values of /I of 0.0091, 0.0131, 0.251 and 0.0457. The 
experimental results show a more complicated flow pattern for small values of p. At /I = 0.0091, it 
is observed that there are three pairs of vortices very close to the body. Two of them are located 
adjacent to the body, whereas the third one is located further away in the flow field on the cuspidal 
edge. As the value of /3 is increased, it is observed that the central vortex shrinks and the vortex on 
the cuspidal edge becomes more dominant, and at p=O.O457 the central vortex has almost 
disappeared. In all the experimental results shown, the vortex on the obtuse edge remains 
essentially at the same location. The numerical result at b = 0.0091 shows three main vortices, two 
of which are located adjacent to the body, whereas the third one is located further away in the flow 
field. As the value of p is increased the vortex adjacent to the body and close to the cuspidal edge 
shrinks and the vortex further away in the flow field becomes more dominant and moves towards 
the cuspidal edge. A t  /j = 0.0251 and /I = 0.0325 the vortex adjacent to the body and close to the 
cuspidal edge has disappeared and the vortex further away in the flow field has moved to the 
cuspidal edge. For all values of /j from 0.009 I to 0.0325, the vortex adjacent to the body and close to 
the obtuse edge remains at essentially the same location. 

The numerical results for R ,  = 206 and p = 0.0457 did not converge even when the converged 
results for R ,  = 206 and two separate values of b of 0.0325 and 0.0622 were used as initial guess 
solutions. This may indicate a change in flow pattern, which is indeed seen at f i  = 0.0622. In this 
case, again three vortices appear with two vortices located close to the obtuse edge and 
tightly packed adjacent to the body, whereas the third one spreads more into the flow field and 
is located at a cuspidal edge. As p is increased to 0.1, the vortices located close to the body 
shrink and the vortex on the cuspidal edge becomes more dominant and spreads over the 
whole plotted domain. Unfortunately, the experimental results at higher values of /3 are not 
available to observe the existence of a critical value of b for transition to a different flow pattern. 
Overall, the numerical results exhibit the trends observed experimentally. 

The steady flow components illustrated in these Figures are again expected to be small 
compared to the main periodic flow. The actual maxima of the resultant velocities and their 
locations in the flow domain are shown in Table XII. These maximum velocities were obtained 
only from a check of nodal values, so they may not be the global maxima. In all cases, except 
for R ,  = 55.1 and /) = 0.1, the maximum velocity occurred at the body mean position. For the 
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Table XII. Maximum steady component of 
velocity for oscillating Joukowski profile. 

R ,  B Location of %ax 
maximum 

steady velocity 
~ 

UO 

X Y 

55.1 
55.1 
55.1 

206 
206 
206 
206 
206 
206 
206 

0.0 1 
0.064 
0.1 
0.009 1 
0.0131 
0.0188 
0025 1 
0.0325 
0.0622 
0.1 

- 0.05 105 
- 0.0567 
- 0.7 
- 0.5105 
-0.5105 
- 0.5105 
- 0.5 105 

0.1 134 
0.1134 

-0.5105 

023 13 
0.2466 
0 
0.23 13 
0.23 13 
0.23 13 
0.23 13 
0.1431 
0.1431 
0.23 13 

0.0407 
0.6910 
0.5 134 
00582 
0.0839 
0.1206 
0.1610 
0.3073 
0.8377 
0.5473 

aforementioned case, the maximum steady velocity occurs at a position very close to the body 
mean position. 

Some of the results from equation (38) are shown in Figures 22, 23 and 24. The results for 
R ,  = 55.1 are shown in Figures 22 and 23 for values of p of 0.01 and 0.1, respectively, and the 
results for R ,  = 206 and p = 0.1 are shown in Figure 24. These Figures show velocity vectors 
over a uniform mesh in the vicinity of the body for t = 0, 7114, 7112, 3x1471, 57114, 3x12 and 7x14, 
that is equal time steps over one full cycle of body motion. Unlike the case of the square and 
the circular body, where it is necessary to show the results only for one half cycle of body motion 
because of the symmetry, the results for the Joukowski profile have to be shown for one full 
cycle. The size of each vector indicates the velocity magnitude. Note that the scale in each 
illustration is different. 

It is clear from these Figures that there is one main vortex in the upper half of the fluid flow and 
although it does move slightly from side to side it is located just above (and below by symmetry) the 
oscillating body. For R ,  =551 and values of pof 001 and 0.1 the location of the main vortex is 
essentially the same. As R ,  is increased to 206, this vortex system moves closer to the body and 
decreases in size, thereby increasing the velocity gradients in that region. Consequently, the 
boundary layer thickness is also decreased. 

The results for the stability analysis are obtained by using the finite element grid in Figure 19 
with D,/b = 18.3. This grid has 62 pressure variables and 256 velocity variables for both symmetric 
and antisymmetric modes. 

The stability analysis is performed for the oscillating Joukowski profile for R ,  = 206 and 
j? = 0.0251. The results for the top 135 eigenvalues in descending order of magnitude are presented 
in Tables XI11 and XIV for the symmetric and antisymmetric perturbation modes, respectively. The 
flow situation considered here is very close to the flow situation with the same values of R ,  of 206 
and p of 0.0457, where the numerical solution did not converge. The results show that there are 124 
eigenvalues (twice the number of pressure variables) with magnitude equal to 1 and the rest are all 
less than 1. This indicates that the steady-state solution is stable for both symmetric and 
antisymmetric modes. The results also show that the eigenvalues have essentially converged at 
At = 2n/10 and further reduction of the time step interval to At = 2x140 brings about no change 
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t , S r  , scale = 0.4298 

t = ?f scale = 0.7718 

t = scale = 0.4454 

Figure 22. Velocity vectors for oscillating Joukowski profile: R ,  = 55.1, /3 = 0.01, D,/b = 18.3 

in them. Many of the eigenvalues in the present case have magnitudes close to 1, which qualitatively 
indicates a 'weakly' stable situation. This may be due to the fact that the flow under consideration is 
very close to the flow for which the numerical results did not converge. 

4. CONCLUDING REMARKS 

The present method of representing the interaction between a solid body and viscous flow seems to 
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Figure 23. Velocity vectors for oscillating Joukowski profile: R ,  = 55.1, = 01, D,Jb = 18.3 
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Figure 24. Velocity vectors for oscillating Joukowski profile: R ,  = 206, = 0.1, D,/b = 18.3 
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Table XIII. Symmetric mode stability ana- 
lysis for oscillating Joukowski profile: 

R ,  = 206, j = 0.025 1 

Eigenvalue no. 2n 271 At=- At=- 
10 40 

14 121 

1 
2 
3 

124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

1 
1 
1 

1 
0.98 6 3 8 
0.98478 
0.97876 
097069 
0.96840 
0.963 19 
0.96020 
0.95102 
0.94683 
093428 
0.93314 

1 
1 
1 

1 
0.9863 8 
0.98478 
0.97876 
0.97069 
0.96840 
0.963 19 
0.96020 
0.95102 
0.94683 
0.93428 
0.93314 

Table XIV. Antisymmetric mode stability 
analysis for oscillating Joukowski profile: 

R ,  = 206, = 0.025 1 

271 271 
At=-- At=-  

10 40 

Eigenvalue no. 

111 121 

1 1 1 
2 1 1 
3 1 1 

124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

1 
0.99460 
0.98569 
0.98478 
0.98 154 
0.97874 
097059 
0.96721 
0.963 19 
0.96045 
0.95995 
0.95067 

1 
0.99460 
0.98569 
0.98478 
0.98 154 
0.97874 
097059 
0.96721 
0.963 19 
0.96045 
0.95995 
095067 
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work very well. In particular, the Taylor series expansion of the oscillating body boundary 
conditions with respect to the fixed finite element grid is apparently adequate to capture the basic 
non-linear phenomena of secondary flow. 

The full non-linear Newton-Raphson procedure for solving the non-linear algebraic equations 
is successful for the range of parameters considered in the present study. 

The overall agreement between the numerical and the experimental results for the basic non- 
linear phenomena of steady streaming is very good. The results for the instantaneous velocity 
vectors in the fluid domain show one main vortex in the upper half (and lower half by symmetry) of 
the transient flow. As the frequency Reynolds number R, increases, this vortex moves closer to the 
body and decreases in size, thereby increasing the velocity gradients in that region. This indicates 
that the boundary layer thickness decreases with the increasing R,, as it should. 

Overall, the implicit numerical integration scheme using the trapezoidal rule to obtain the 
transition matrix for stability analysis seems to work very well. The convergence to the transition 
matrix and thereby to the eigenvalues is obtained by increasing the number of time steps (that is, 
decreasing the time step interval). The scheme is unconditionally stable with respect to the size of 
the time step. The computer time required for obtaining the converged results is very high because 
the number of matrix inversions required are equal to the number of time steps. Therefore, any 
increase in the number of time steps would correspond to a substantial increase in the computer 
time required. 
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APPENDIX I 

The net global u and u degrees of freedom for finite element discretization of viscous fluid each 
number n, including r degrees of freedom at the interface between the finite element grid and the 
mean position of the moving body. There are m net global p degrees of freedom. Also the u and u 
degrees of freedom at the edge of an element which is at the interface between the viscous fluid and 
the mean position of the body each number q. Therefore, we can write the matrices in equation (10) 
as 

p =  - 

M;;C,j 
i = n - r + l  

0 0 

0 i Mr:Cfj 0 
f = n - r + l  

0 0 0 - 

2 

1 

I Q = P +  0 

L 0 0 OJ 
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I 

KY? ‘f Cl j  

KY: ‘f C I j  

I = n - r + l  j =  1 

l = n - r + l  j =  1 

- i: Pi“, ‘f C l j  
( l = n - r + l  j =  1 

I = n - r + l  l = n - r +  1 

1 R =  -- 

KYY 
j = n - r + l  I 

G =  -- i 
j = n - r +  I I j = n - r + l  

- i Pj”, 

j = n - r + l  k = n - r + l  I = n - r +  1 j =  1 

0 
H =  

APPENDIX I1 

The matrix Z ( t )  in equation (18) is given by 

I ’  

+ 6 f r n j M m  + 6;mUrn drjrnurn 

0 0 
6;mUrn 6frnjUm + 6;mjvm + 6 f j r n V m  Z ( t )  = K + p 
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